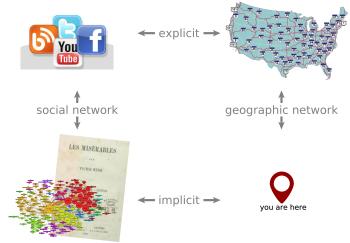
So Far Away and Yet so Close: Augmenting Toponym Disambiguation and Similarity with Text-Based Networks

Andreas Spitz, Johanna Geiß and Michael Gertz

Heidelberg University, Institute of Computer Science Database Systems Research Group, Heidelberg

{spitz, geiss, gertz}@informatik.uni-heidelberg.de


3rd GeoRich Workshop San Francisco, June 26, 2016 Motivation

Network Properties

Toponym Disambiguatio

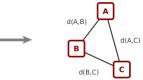
Summary

Implicit Networks

http://web.mmlc.northwestern.edu/re-visualizing-the-novel/

Implicit Text-Based Networks

"Most of the circuits currently in use are specially constructed for competition. The current street circuits are Monaco, Melbourne, Montreal, Singapore and Sochi, although races in other urban locations come and go (Las Vegas and Detroit, for example) and proposals for such races are often discussed – most recently New Jersey."


en.wikipedia.org/wiki/Formula_One

Graph Extraction from Text

سسسسدسد Α سسد տարտարչարու տարարարու տար տարարու հանություն հանությո տարարություն տրորություն ىبد B سسر سسسرسسر տրորորություն հայություն հայուներու հայուն տաղ տարարութ տարարություն հայություն տարուությունը արությունը С արարար արանան արարարություն արարանություն տարարություն հարություն տար տարարու հարարարու հար տարարություն հայություն

Graph Extraction from Text



s(v,w) := distance in sentences between toponyms v and w

$$d(v,w) := \exp\left(-\frac{s(v,w)}{2}\right)$$

Graph Extraction from Text

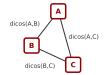
 $\boldsymbol{s}(\boldsymbol{v},\boldsymbol{w}):=$ distance in sentences between toponyms \boldsymbol{v} and \boldsymbol{w}


$$d(v,w) := \exp\left(-\frac{s(v,w)}{2}\right)$$

Network Properties

Toponym Disambiguation

Summary


Edge Aggregation

Distance-based cosine for nodes v and w:

$$dicos(v,w) := \frac{\sum_i d_i(v) \ d_i(w)}{\sqrt{\sum_i d_i(v)^2} \sqrt{\sum_i d_i(w)^2}}$$

Nonreciprocal Relationships

Dirk Beyer, Wikimedia Commons

Inducing Edge Directions

Inducing Edge Directions

Normalize weights of outgoing edges:

$$\omega(v \to w) := \frac{dicos(v, w)}{\sum_{x \in V} dicos(v, x)}$$

Adding Knowledge Base Support: Wikidata

lab	el r	anl	k va	lue i	dentifier I
San Fi	rancisco				Q62
coordinate location i 37°46'0"N, 122°26'0"W ► 1 reference					6'0"W
population			805,235		
			point in time	e 1 Ap	ril 2010
		►	1 reference		
property st		sta	tement	qua	lifier

Toponym Extraction in Wikipedia & Wikidata

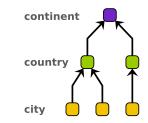
Network Overview

Network statistics:

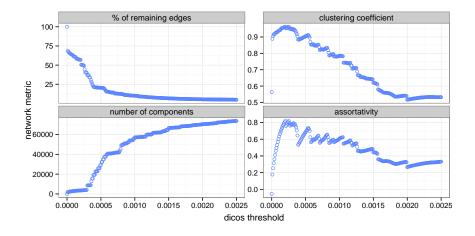
V	E	density	clustering coefficient
723,779	178,890,238	$6.8 \cdot 10^{-4}$	0.56

Node types:

Network Overview

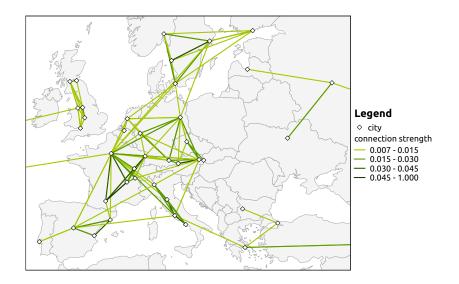

Network statistics:

V	E	density	clustering coefficient
723,779	178,890,238	$6.8 \cdot 10^{-4}$	0.56


Node types:

Wikidata location hierarchy:

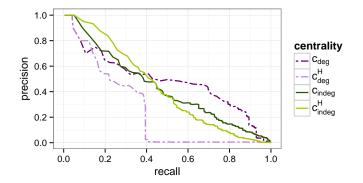
Network Properties



Network Centrality

city	c_{deg}	c_{indeg}	c^H_{deg}	c_{indeg}^{H}
Paris	63,150	89.87	8,064	7.56
New York City	79,398	71.74	9,294	12.12
Chicago	54,217	51.84	8,074	7.70
Los Angeles	49,961	51.47	7,276	7.76
Washington, D.C.	62,858	51.05	8,138	8.65
Boston	45,895	50.43	6,121	6.08
Philadelphia	51,237	45.19	6,372	5.03
Vienna	35,724	44.55	4,827	7.44
Moscow	29,026	43.77	4,644	19.47
San Francisco	43,759	40.87	6,029	4.76

Network between the top 10 European cities by in-degree centrality.


Geographically Embedded Network

Motivation

Network Properties

Centrality-Based Hierarchy Classification

Classification into classes country and city based on centrality.

Disambiguation Problem

Locations of towns and cities with the name Heidelberg.

Network-based Toponym Disambiguation

տաւ seed տատատուտ
արարություն հարություն
տաղ տարրություն
արուրություն արություն
աաւ աաաւտաւ տաս աա
արարարան արարան
արի արիստուսին
արդուրություն արդություն
արդուրություն արդություն
seed سىسىدىسىد سىسىسىسدىسد
արուրություն արություն
արդուրություն արդություն
տուշ տորություն տորորություն
արդուրություն արդություն

Given a document with toponyms, the following information is available:

- a set of locations L in the network
- a set of seeds S ⊆ L in the document (unambiguous toponyms)
- an ambiguous toponym t in the document with candidates $l \in L$

Network-based Toponym Disambiguation

ՏՅ աատատանութ		
ىسد سسىسىسىد	ىسىدە	uuuu
տաւ տաաաւաւ	سسسد	سسد
որու տրորություն	ىسىسدە	uuuu
.سسد <mark>toponym</mark> سد		
տաղարար տար	ىسىبىدە	uuu
տաղ տարարու տու		
ոտը տարություն	ىسىدە	uuu
ոտէ տարտուտուու	ىسىسدە	uuu
سسد سسسسدسد	سسسد	seed
տաղարություն	ىسىدە	uuu
ոտը տարություն	ىسىسدە	uuu
سسد سسسسدسد	سسسد	سسد
ىسد سسىدىسسىسد	ىسىبىدە	uuu

Given a document with toponyms, the following information is available:

- a set of locations L in the network
- a set of seeds S ⊆ L in the document (unambiguous toponyms)
- an ambiguous toponym t in the document with candidates $l \in L$

Resolve toponyms by their neighbourhood in the network:

resolve(t) :=
$$\operatorname*{arg\,max}_{l \in L} \sum_{s \in S} \omega(l, s)$$

Evaluation on AIDA CoNLL-YAGO data set

	Precision in %			mean distance in km		
	all	seeds	ambig.	all	seeds	ambig.
WLND	85.7	86.0	85.6	327.5	522.9	179.1
AIDA	84.9	86.0	83.2	120.4	87.7	142.3
B_{DIST}		86.0	78.5	683.1	522.9	800.8
B_{MIN}	81.4	86.0	78.8	650.9	522.9	745.0

WLDN Wikipedia Location Network disambiguation
AIDA AIDA named entity disambiguation
B_{DIST} Baseline using minimum geographic distance
B_{MIN} Baseline using lowest Wikidata ID

Summary

New method for implicit network extraction that

- is based on text distances of toponyms,
- works across documents,
- can be applied to any geo-tagged corpus.

Application to Wikipedia & Wikidata

- creates an accurate and reliable network,
- supports disambiguation and entity linking,
- provides a *language-agnostic* tool for NLP tasks

The Wikipedia Location Network is available for download.

http://dbs.ifi.uni-heidelberg.de/index.php?id=data

The Wikipedia Location Network is available for download.

http://dbs.ifi.uni-heidelberg.de/index.php?id=data

Thank you! Questions?

Bibliography

Johanna Geiß and Michael Gertz.

With a Little Help from my Neighbors: Person Name Linking Using the Wikipedia Social Network.

In WWW Companion, 2016.

Johanna Geiß, Andreas Spitz, Jannik Strötgen, and Michael Gertz. The Wikipedia Location Network - Overcoming Borders and Oceans. In *GIR*, 2015.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum.

Robust Disambiguation of Named Entities in Text. In *EMNLP*, 2011.

Michael Speriosu and Jason Baldridge.

Text-Driven Toponym Resolution using Indirect Supervision. In ACL, 2013.